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Abstract: The lithosphere-asthenosphere system has been represented by multi-layered model consisting of two 

parallel layers, the first one is elastic and the second one is viscoelastic, overlying a viscoelastic half-space and 

they are assumed to be in welded contact. A vertical buried strike-slip fault is taken to be situated in the 

viscoelastic layer. The fault undergoes a sudden slip under the action of tectonic forces such as mantle 

convection. Analytical expressions for displacements, stresses and strains are calculated for both layers and 

half-space by using modified Green’s function technique and correspondence principle. Numerical 

computations have been carried out to find the effect of fault movement in change of surface shear stress. The 

contour map for the stress pattern in both of the first layer and second layer have been prepared. 

Keywords: Lithosphere-asthenosphere system, aseismic state, strike-slip fault, mantle-convection, sudden 

movement, Green’s function, correspondence principle, Maxwell type. 

 

I. Introduction 
Most of the active seismic zones are surrounded by a number of fault system. In these zones it has been 

observed that during aseismic period, there exist a slow, quasi-static surface deformations which indicates that 

there was an accumulation of stress and strain in these region. Continuous accumulation of stress near fault may 

leads to a sudden movement across the fault. So for better understanding of earthquake process which occurs in 

cyclic order it is necessary to observe the ground deformations near active faults. Such study may help to 

construct a mathematical model for developing the earthquake prediction problem. In this paper  we consider the 

lithosphere-asthenosphere system as a multi-layered half space (elastic/ viscoelastic). A wide range of model has 

been developed by many authors like Rybicki [1,2], Mukhopadhyay [3,4], Sen and Debnath [5], Debnath and 

Sen [6-8], Debnath and Sen [9-11], Mondal and Sen [12], Karmakar and Sen [13] etc. The material of 

viscoelastic layer and half-space have been taken as Maxwell type with different effective rigidities and 

viscocities. 

 

II. Formulation 
We consider a theoretical model of the lithosphere-asthenosphere system consisting of two parallel 

layers of which the first layer is elastic and the second layer is viscoelastic, overlying on a viscoelastic half-

space. The material of the viscoelastic layer and half-space are of Maxwell type with the different effective 

rigidity and effective viscosity. The depth of the boundary dividing two layers is 1 and the depth of dividing 

viscoelastic layer and viscoelastic half-space is 2 (2 > 1) from free surface. These two layers and the second 

layer and half-space are in welded contact. A plane buried vertical strike-slip fault whose length is large 

compared to its width 𝑙 is taken to be situated in the viscoelastic layer. The upper and lower edges of the fault 

are horizontal. The depth of upper edge of the fault below the free surface is (1 + 𝑟1), 𝑟1 being the depth of the 

upper edge of the fault from the first surface of separation. 

A Cartesian co-ordinate system (𝑦1 , 𝑦2 , 𝑦3) with the plane free surface as the plane 𝑦3 =  0 have been 

considered, 𝑦3-axis is pointing downwards into the medium and 𝑦1-axis is taken along the strike of the fault on 

free surface. The boundary surfaces between the two layers and the viscoelastic layer and viscoelastic half-

spaces are given by the planes 𝑦3 = 1 and 𝑦3 = 2 respectively. With this choice of co-ordinate system the 

elastic layer occupies the region (0 ≤ 𝑦3 ≤ 1 , |𝑦2| < ∞), the viscoelastic layer occupies the region (1 ≤ 𝑦3 ≤
 2 , |𝑦2| < ∞) and the viscoelastic half-space occupies the region (𝑦3 ≥ 2 , |𝑦2| < ∞). For convenience of 

analysis we introduce another set of Cartesian co-ordinate axes (𝑦1
′ , 𝑦2

′  , 𝑦3
′  ) with the strike of the fault as 𝑦1

′ -

axis and the plane of the fault is given by the plane 𝑦2
′  =  0, so that the fault 𝐹 is given by 𝐹: (𝑦2

′ = 0, 0 ≤
 𝑦3
′  ≤ 𝑙). The relations between two co-ordinate systems is given by 

𝑦1 = 𝑦1
′ , 𝑦2 = 𝑦2

′  , 𝑦3 = 1 + 𝑟1 + 𝑦3
′   (1) 
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The Figure 1 shows the section of the theoretical model by the plane 𝑦1 = 0. 

Since we consider a long vertical strike-slip fault then the displacements, stresses and strains are taken 

to be independent of 𝑦1 and functions of 𝑦2 , 𝑦3 , 𝑡. Then the components of displacement, stress and strain can be 

divided into two groups, one associated with strike-slip movement and another associated with dip-slip 

movement of the fault. Since in this model the strike-slip movement of the fault is considered, then the 

components of displacement, stress and strain associated with this strike-slip movement are 𝑢1, (𝜏12 , 𝜏13), 

(𝑒12 , 𝑒13) for elastic layer, 𝑢1
′ , (𝜏12

′ , 𝜏13
′ ), (𝑒12

′ ,  𝑒13
′ ) for viscoelastic layer and 𝑢1

′′ , (𝜏12
′′ , 𝜏13

′′ ), (𝑒12
′′ , 𝑒13

′′ ) for 

viscoelastic half-space respectively. 

 

2.1 Constitutive equations 

Stress-strain relations: 

 
𝜏12 = 𝜇1

𝜕𝑢1

𝜕𝑦2

𝜏13 = 𝜇1

𝜕𝑢1

𝜕𝑦3 
 
 

 
 

(2) 

 

for elastic layer  0 ≤ 𝑦3 ≤ 1,  𝑦2 < ∞ , 𝑡 ≥ 0. 

 

where 𝜇1is the rigidity of the elastic layer which is assumed to be constant. 

 
 

1

𝜂2

+
1

𝜇2

𝜕

𝜕𝑡
 𝜏12

′ =
𝜕2𝑢1

′

𝜕𝑡𝜕𝑦2

 
1

𝜂2

+
1

𝜇2

𝜕

𝜕𝑡
 𝜏13

′ =
𝜕2𝑢1

′

𝜕𝑡𝜕𝑦3 
 
 

 
 

(3) 

 

for the viscoelastic layer  1 ≤ 𝑦3 ≤ 2,−∞ < 𝑦2 < ∞ , 𝑡 ≥ 0. 

 

where 𝜇2 is the effective rigidity and 𝜂2is the effective viscosity of the viscoelastic layer which are assumed to 

be constant. 

 
 

1

𝜂3

+
1

𝜇3

𝜕

𝜕𝑡
 𝜏12

′′ =
𝜕2𝑢1

′′

𝜕𝑡𝜕𝑦2

 
1

𝜂3

+
1

𝜇3

𝜕

𝜕𝑡
 𝜏13

′′ =
𝜕2𝑢1

′′

𝜕𝑡𝜕𝑦3 
 
 

 
 

(4) 

 

for the viscoelastic half-space  𝑦3 ≥ 2,−∞ < 𝑦2 < ∞ , 𝑡 ≥ 0. 

 

where 𝜇3 is the effective rigidity and 𝜂3is the effective viscosity of the viscoelastic half-space which are 

assumed to be constant. The time 𝑡 being measured form a suitable instant when there is no seismic disturbance. 

 

Stress equation of motion: 

For a slow, aseismic, quasi-static deformation the magnitude of inertial terms are very small compared to the 

other terms in stress equation of motion and they can be neglected. Hence relevant stresses satisfy the relations 

 
𝜕𝜏12

𝜕𝑦2
+

𝜕𝜏13

𝜕𝑦3
= 0  (5) 

for elastic layer  0 ≤ y3 ≤ h1 , |y2| < ∞  
𝜕𝜏12

′

𝜕𝑦2
+

𝜕𝜏13
′

𝜕𝑦3
= 0    (6) 

for viscoelastic layer  h1 ≤ y3 ≤ h2, |y2| < ∞  
𝜕𝜏12

′′

𝜕𝑦2
+

𝜕𝜏13
′′

𝜕𝑦3
= 0      (7) 

for viscoelastic half-space (y3 ≥ h2, |y2| < ∞). 

From equation (2)-(7) we get 

∇2𝑢1 = 0 for  0 ≤ y3 ≤ h1, |y2| < ∞   (8) 

∇2𝑢1
′ = 0 for  h1 ≤ y3 ≤ h2, |y2| < ∞   (9) 

∇2𝑢1
′′ = 0 for (y3 ≥ h2, |y2| < ∞)   (10) 
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2.2. Boundary Conditions 

Since the free surface is stress free and the two layers and second layer and half-space are assumed to be in 

welded  contact, then the boundary conditions are  

 

𝜏13 = 0 at y3 = 0

τ13 = τ13
′  at y3 = h1

u1 = u1
′  at y3 = h1

τ13
′ = τ13

′′  at y3 = h2

u1
′ = u1

′′  at y3 = h2

τ13
′′ → 0 as y3 → ∞

for  y2 < ∞, 𝑡 ≥ 0  
 
 
 

 
 
 

  (11) 

 

2.3. Initial Conditions 
We measure the time t from a suitable instant when the model is in aseismic state and there is no seismic 

disturbance in it. (𝑢1)0, (𝑢1
′ )0 , (𝑢1

′′ )0, (𝜏12)0 ,⋯, (𝑒12
′′ )0 are the values of 𝑢1, 𝑢1

′ , 𝑢1
′′ ,…., 𝑒12

′′  at time 𝑡 =  0 and 

they satisfy all the relations stated above. 

 

2.4. Conditions at Infinity and Initial Conditions 
At a large distance from fault plane there is a shear strain which may changes with time maintained by tectonics 

forces. Then  

 

 

e12 →  e12 0∞ + g t 

for 0 ≤ 𝑦3 ≤ 1  

e12
′ →  e12

′  0∞ + g t 

for 1 ≤ 𝑦3 ≤ 2

e12
′′ →  e12

′′  0∞ + g t 

for 𝑦3 ≥ 2

as  y2 → ∞, t ≥ 0  
 
 
 

 
 
 

   (12) 

where  e12 0∞ =
lim

|y2| → ∞
(e12)0 ,(𝑒12

′ )0∞ =
lim

|𝑦2| → ∞
(𝑒12

′ )0, (𝑒12
′′ )0∞ =

lim
|𝑦2| → ∞

(𝑒12
′′ )0, where 

(𝑒12)0, (𝑒12
′ )0, (𝑒12

′′ )0 are the values of 𝑒12 , 𝑒12
′ , 𝑒12

′′  at t = 0 and 𝑔(𝑡) is a slowly increasing, continuous function 

of 𝑡 with 𝑔(0)  =  0. Same 𝑔(𝑡) is taken for layers and half-space, since they are in welded contact, so that 

strains are continuous at the boundaries. 

 

III. Displacements, Stresses And Strains In The Absence of Fault Movement 
To obtain the solution for displacements, stresses and strains in the absence of any fault movement, we 

take the Laplace transforms of (2)-(12) with respect to time t. This transformation transfers the aforesaid 

boundary value problem to another boundary value problem in transformed domain which can be solved easily. 

Then using Laplace inverse transformation and correspondence principle, finally we get the following solutions: 

 

for first elastic layer  0 ≤ y3 ≤ h1 , |y2| < ∞  

 

u1 =  u1 0 + y2g t 

τ12 =  τ12 0 + μ1g t 

τ13 =  τ13 0

e12 = (e12)0 + g(t)  
 

 
   (13) 

 

for second elastic layer  h1 ≤ y3 ≤ h2, |y2| < ∞  
 

 

 

𝑢1
′ =  𝑢1

′  0 + 𝑦2g t 

𝜏12
′ =  𝜏12

′  0𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 + 𝜇2  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇2 𝑡 − 𝜏 

𝜂2

 

𝑡

0

𝑑𝜏

𝜏13
′ =  𝜏13

′  0𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 
 
 
 
 

 
 
 

(14) 
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for half-space (y3 ≥ h2, |y2| < ∞) 

 

 

𝑢1
′′ =  𝑢1

′′  0 + 𝑦2g t 

𝜏12
′′ =  𝜏12

′′  0𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 + 𝜇3  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇3 𝑡 − 𝜏 

𝜂3

 

𝑡

0

𝑑𝜏

𝜏13
′′ =  𝜏13

′′  0𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 

 
 
 
 

 
 
 

(15) 

where 𝑔1 𝑡 =
𝑑

𝑑𝑡
 𝑔(𝑡) . 

 

From these solution it is observed that there are accumulation of shear strain far away from the fault 

due to some tectonic reason which implies that there will be an accumulation of shear stress 𝜏12
′  in the 

viscoelastic layer. When this accumulated stress exceeds the total cohesive and frictional forces across the fault 

then there will be a possible movement across it and we consider that this movement is a sudden movement. 

Then the above solution are no longer valid and required further modifications in order to incorporate the effects 

of sudden movement across the fault. 

 

IV. Displacements, Stresses And Strains After Restoration of Aseismic State After A Sudden 

Movement Across The Fault 
It is to be noted that due to the sudden fault movement across the fault F, the accumulated stress will be 

released at least to some extent and the fault becomes locked again. For a comparatively short period of time 

during and after sudden fault movement when the seismic disturbances are present then the inertial terms are not 

small and can not be neglected. So we leave out this short period of time. Now we start with the situation when 

the model is again in a quasi-static, aseismic state, re-established some time after the sudden movement across 

the fault, and fix the new time origin 𝑡 = 0 at the instant at which the aseismic state is re-established. We shall 

determine the displacements, stresses and strains during this second phase of aseimic state with this new time-

origin. Since the deformations of the system are slow, aseismic and quasi-static, the inertial forces are small and 

can be neglected as stated before, so that all the aforesaid constitutive equations and boundary conditions, initial 

conditions and condition at infinity are also valid for 𝑡 ≥ 0 during the aseismic period which is re-established 

after the sudden movement. In addition to these relations we have one more condition which characterizes the 

sudden movement across the fault 𝐹 (𝑦2
′ = 0, 0 ≤ 𝑦3

′ ≤ 𝑙) after which the fault becomes locked : 

 
 𝑢1

′  = 𝑈𝑓 𝑦3
′   across 𝐹 (𝑦2

′ = 0, 0 ≤ y3
′ ≤ 𝑙) (16) 

where  𝑢′1 =
lim

𝑦2
′ → 0+ 𝑢1

′ −
lim

𝑦2
′ → 0−

𝑢1
′  and 𝑓(𝑦3

′ ) is a continuous function of 𝑦3
′  and U is constant, 

independent of 𝑦2
′  and 𝑦3

′ . All the other components 𝑢1,𝑢1
′′ , 𝜏12 ,⋯⋯ , 𝑒13

′′  are continuous everywhere in the 

model. 

 

To solve the above initial and boundary value problem with new time origin 𝑡 ≥ 0 for displacements, stresses 

and strains during aseismic state after commencement of sudden fault movement, we try to find the solutions in 

the following form: 

 

 

𝑢1 =  𝑢1 1 +  𝑢1 2

𝜏12 =  𝜏12 1 +  𝜏12 2

𝜏13 =  𝜏13 1 +  𝜏13 2

𝑒12 =  𝑒12 1 +  𝑒12 2

𝑢1
′ =  𝑢1

′  1 +  𝑢1
′  2

𝜏12
′ =  𝜏12

′  1 +  𝜏12
′  2

𝜏13
′ =  𝜏13

′  1 +  𝜏13
′  2

𝑢1
′′ =  𝑢1

′′  1 +  𝑢1
′′  2

𝜏12
′′ =  𝜏12

′′  1 +  𝜏12
′′  2

𝜏13
′′ =  𝜏13

′′  1 +  𝜏13
′′  2 

 
 
 
 
 
 

 
 
 
 
 
 

  (17) 
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where (𝑢1)1, (𝜏12)1,⋯⋯ , (𝜏13
′′ )1 satisfy all the stress strain relations (2)-(4), stress equations (5)-(7), boundary 

conditions (11), initial conditions and conditions at infinity (12). So the solutions for (𝑢1)1, (𝜏12)1,. . . ,(𝜏13
′′ )1 

are given by 


 

 𝑢1 1 =  𝑢1 𝑝 + 𝑦2𝑔 𝑡 

 𝜏12 1 =  𝜏12 𝑝 + 𝜇1𝑔 𝑡 

 𝜏13 1 =  𝜏13 𝑝
(𝑒12)1 = (𝑒12)𝑝 + 𝑔(𝑡)  

 
 

 
 

    (18) 

 

 𝑢1
′  1 =  𝑢1

′  𝑝 + 𝑦2g t 

 𝜏12
′  1 =  𝜏12

′  𝑝𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 + 𝜇2  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇2 𝑡 − 𝜏 

𝜂2

 

𝑡

0

𝑑𝜏

 𝜏13
′  1 =  𝜏13

′  𝑝𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 

 
 
 
 
 

 
 
 
 

(19) 

 

 𝑢1
′′  1 =  𝑢1

′′  𝑝 + 𝑦2g t 

 𝜏12
′′  1 =  𝜏12

′′  𝑝𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 + 𝜇3  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇3 𝑡 − 𝜏 

𝜂3

 

𝑡

0

𝑑𝜏

 𝜏13
′′  1 =  𝜏13

′′  𝑝𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 

 
 
 
 
 

 
 
 
 

(20) 

where (𝑢1)𝑝 , (𝜏12 )𝑝 ,⋯⋯ , (𝜏13
′′ )𝑝  are the values of (𝑢1)1 ,  (𝜏12 )1 ,⋯⋯ , (𝜏12

′′ )1 respectively at 𝑡 = 0 (i.e. new 

time origin) and 𝑔1 𝑡 =
𝑑

𝑑𝑡
 𝑔(𝑡) . 

 

(𝑢1)2 , (𝜏12)2,⋯⋯ , (𝜏13
′′ )2 satisfy all the above relations (2)-(11) and also satisfy the dislocation condition (16) 

together with 

 

 𝑒12 2 → 0
 𝑒12

′  2 → 0

 𝑒12
′′  2 → 0

as  𝑦2 → ∞, 𝑡 ≥ 0 
 

 
 (21) 

 

 

To obtain the solutions for (𝑢1)2 , (𝜏12)2,⋯⋯ , (𝜏13
′′ )2 for 𝑡 ≥  0 we take Lapace transformation of the 

aforesaid relations satisfied by them with respect to t. The resulting boundary value problem involves with 

(𝑢 1)2, (𝑢 1
′ )2,…., (𝜏 13

′′ )2, which are the Laplace transformation of (𝑢1)2, (𝜏12)2,⋯⋯ , (𝜏13
′′ )2 respectively with 

respect to t. The transformed boundary value problem can be solved by using modified Green’s function 

technique developed by Maruyama [14] and Rybicki [1,2] and using correspondence principle as explained in 

Appendix. Then taking inverse Laplace transformation we obtain the solutions of (𝑢1)2, (𝜏12)2,⋯⋯ , (𝜏13
′′ )2. 

Finally we get the complete solutions from (17) as follows: 

 

 

𝑢1 𝑦2 , 𝑦3 , 𝑡 =  𝑢1 𝑝 + 𝑦2𝑔 𝑡 +
𝑈

𝜋
𝜓1

′  𝑦2 , 𝑦3 , 𝑡 

𝜏12 𝑦2 , 𝑦3 , 𝑡 =  𝜏12 𝑝 + 𝜇1𝑔 𝑡 +
𝜇1𝑈

𝜋
𝜓2

′  𝑦2 , 𝑦3 , 𝑡 

𝜏13 𝑦2 , 𝑦3 , 𝑡 =  𝜏13 𝑝 +
𝜇1𝑈

𝜋
𝜓3

′  𝑦2 , 𝑦3 , 𝑡 

𝑒12 𝑦2 , 𝑦3 , 𝑡 =  𝑒12 𝑝 + 𝑔 𝑡 +
𝑈

𝜋
𝜓2

′  𝑦2 , 𝑦3 , 𝑡 

 
 
 
 
 

 
 
 
 

(22) 

for elastic layer 0 ≤ 𝑦3 ≤ 1,  𝑦2 < ∞  
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𝑢1
′  𝑦2 , 𝑦3 , 𝑡 =  𝑢1

′  𝑝 + 𝑦2g t +
𝑈

2𝜋
𝜙1

′  𝑦2 , 𝑦3 , 𝑡 

𝜏12
′ (𝑦2 , 𝑦3 , 𝑡) =  𝜏12

′  𝑝𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 +

𝜇2  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇2 𝑡 − 𝜏 

𝜂2

 

𝑡

0

𝑑𝜏 +
𝑈

2𝜋
𝜙2

′  𝑦2 , 𝑦3 , 𝑡 

𝜏13
′  𝑦2 , 𝑦3 , 𝑡 =  𝜏13

′  𝑝𝑒𝑥𝑝  −
𝜇2𝑡

𝜂2

 +
𝑈

2𝜋
𝜙3

′ (𝑦2 , 𝑦3 , 𝑡)

 
 
 
 
 
 

 
 
 
 
 

(23) 

for viscoelastic layer 1 ≤ 𝑦3 ≤ 2 ,  𝑦2 < ∞ 

 

𝑢1
′′  𝑦2 , 𝑦3 , 𝑡 =  𝑢1

′′  𝑝 + 𝑦2g t −
𝑈

𝜇3𝜋
𝜒1

′  𝑦2 , 𝑦3 , 𝑡 

𝜏12
′′ (𝑦2 , 𝑦3 , 𝑡) =  𝜏12

′′  𝑝𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 +

𝜇3  𝑔1(𝜏)𝑒𝑥𝑝  −
𝜇3 𝑡 − 𝜏 

𝜂3

 

𝑡

0

𝑑𝜏 −
𝑈

𝜋
𝜒2

′  𝑦2 , 𝑦3 , 𝑡 

𝜏13
′′  𝑦2 , 𝑦3 , 𝑡 =  𝜏13

′′  𝑝𝑒𝑥𝑝  −
𝜇3𝑡

𝜂3

 −
𝑈

𝜋
𝜒3

′ (𝑦2 , 𝑦3 , 𝑡)

 
 
 
 
 
 

 
 
 
 
 

(24) 

for viscoelastic half − space 𝑦3 ≥ 2,  𝑦2 < ∞ 

Where 𝜓1
′  𝑦2 , 𝑦3 , 𝑡 , 𝜓2

′ (𝑦2 , 𝑦3 , 𝑡), 𝜓3
′ (𝑦2 , 𝑦3 , 𝑡), 𝜙1

′  𝑦2 , 𝑦3 , 𝑡 , 𝜙2
′ (𝑦2 , 𝑦3 , 𝑡), 𝜙3

′ (𝑦2 , 𝑦3 , 𝑡) and 𝜒1
′  𝑦2 , 𝑦3 , 𝑡 , 

𝜒2
′ (𝑦2 , 𝑦3 , 𝑡), 𝜒3

′ (𝑦2 , 𝑦3 , 𝑡) are given in Appendix. 

 

For locked fault, analytical investigations show that the displacements, stresses and strains will be finite and 

single valued everywhere in the model including the tip of the fault 𝐹 if the following sufficient conditions are 

satisfied by 𝑓(𝑦3
′ ) 

(i) 𝑓(𝑦3
′ ) and 𝑓′(𝑦3

′  ) are both continuous function of 𝑦3
′  for 0 ≤  𝑦3

′  ≤  𝑙. 
(ii) 𝑓 0 =  0, 𝑓(𝑙)  =  0 and 𝑓′(0)  =  𝑓′(𝑙)  =  0. 

(iii) Either 𝑓′′(𝑦3
′ ) is continuous in 0 ≤  𝑦3

′  ≤  𝑙 or 𝑓′′(𝑦3
′  ) is continuous in 0 ≤  𝑦3

′  ≤  𝑙 except for a finite 

number of points of finite discontinuity in 0 ≤  𝑦3
′  ≤  𝑙 or 𝑓′′(𝑦3

′ ) is continuous in 0 < 𝑦3
′ < 𝑙 except possibly 

for a finite number of points of finite discontinuity and for the end points of (0, 𝑙), there exist real constant 𝑚,𝑛 

both < 1 such that (𝑦3
′ )𝑚𝑓′′(𝑦3

′ )  →  0 or to a finite limit as 𝑦3
′  →  0 + 0 and (𝑙 −  𝑦3

′  )𝑛𝑓′′(𝑦3
′  )  →  0 or to a 

finite as limit 𝑦3
′  →  𝑙 − 0. 

 

V. Numerical Results And Discussion 
To study the surface displacements, surface shear strain accumulation and / or release and the shear 

stress near the fault tending to cause strike-slip movement of the fault we choose 𝑓(𝑦3
′ ) =

𝑦3
′2 𝑦3

′ −𝑙 
2

 
𝑙

2
 

4 , for which 

displacements, stresses and strains remain finite. 

It is assumed that due to some tectonic reason there is a slow but steady accumulation of shear strain at 

a distance far away from the fault. Keeping this in view we take g(t) to be linearly increasing with time and 

𝑔(0)  =  0. With this assumption, we take 𝑔(𝑡)  =  𝑘𝑡. From major earthquakes it has been observed that the 

stress release may be of the order of 400 bars. So we assume 𝑘 = 3.2 × 10−14 , noting also that the observed rate 

of strain accumulation in seismically active regions during the aseismic period is of the order of 10−6 to 10−8 

per year. 

For 𝜇1, 𝜇2 and 𝜇3, we take the values 𝜇1 = 0.63 × 1012  dynes/ cm2, 𝜇2 = 0.75 × 1012  dynes/ cm2 and 

𝜇3 = 2.42 × 1012  dynes/ cm2 and values of effective viscosities 𝜂2, 𝜂3 for viscoelastic layer and viscoelastic 

half-space are taken as 𝜂2 = 3.0 × 1021  poise, 𝜂3 =  3.5 × 1022  poise. (from the books and papers of Bullen 

[15], Aki [16], Bullen and Bolt [17], Cathles [18], Clift [19], Karato [20]). 

For 1, 2 the thickness of the layers we take 1 = 40 km., 2 = 300 km., 𝑟1 depth of upper edge of the fault 

below free surface = 5 km.. For 𝑙 the width of the fault we use 𝑙 = 10 km. noting that for San Andreas fault in 

North America, the value of 𝑙 has been estimated to be in the range 5-15 km. U = 40 cm. corresponding to the 

observed relative displacements on the surface for moderate buried strike-slip fault movement.  
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Now we compute the following quantities: 

(i) The residual surface shear strain due to fault movement near the fault after one year of the time of restoration 

of aseismic state. 

𝐸12 = [𝑒12 − (𝑒12)𝑝  −  𝑔(𝑡)]𝑦3=0,𝑡=1 year  

      = 
𝑈

𝜋
𝜓2
′  𝑦2 , 𝑦3 , 𝑡  

𝑦3=0,𝑡=1 year
 

                                             

(ii) Change of shear stress in first layer due to fault movement  

𝑇12 = [𝜏12 − (𝜏12)𝑝 − 𝜇1𝑔(𝑡)] 𝑡=1 year  

=  
𝜇1𝑈

𝜋
𝜓2
′  𝑦2 , 𝑦3 , 𝑡  

𝑦3=0,𝑡=1 year
 

                                                 

(iii) Change of shear stress in second layer due to fault movement  

𝑇12
′ =  

𝑈

2𝜋
𝜙2
′  𝑦2 , 𝑦3 , 𝑡  

 𝑡=1 year
 

                                        

The Figure 2 shows that the magnitude of residual surface shear strain 𝐸12  after one year of the time when 

aseismic state is re-established followed by the fault movement is of the order of 10−7 which is in conformity 

with the observed result. It is also shown that the curve of residual surface shear strain is symmetrical about 

𝑦2 = 0. The magnitude is maximum near fault and tends to zero as we move away from the fault. 

The Figures 3(a), 3(b), 3(c) show the change in shear stress 𝑇12  with depth in the first layer due to the 

movement of the fault situated in the second layer for different values of 𝑦2. In Figures 3(a), 3(b) it is observed 

that there are only accumulation of stress whereas in Figure 3(c) it is observed that there is stress release as well 

as accumulation. So we conclude that due to fault movement there is only accumulation of stress near the strike 

of the fault but if we move away from the strike of the fault then there will be both accumulation and release of 

stress. 

The Figures 4(a), 4(b) and 4(c) show the change in shear stress 𝑇12
′  with depth 𝑦3 in the second layer 

due to movement of the fault. It is found that there are both accumulation and release of stress near the fault in 

all cases. It is also observed that as we move away from the strike of the fault then the stress accumulation area 

decreased and release area increased. For large value of 𝑦2 the stress accumulation zone is marginal. In all the 

cases as we move along depth then the effect of fault movement on stress tend to zero. 

The contour maps of change in shear stress in first and second layer due to sudden movement across the fault F 

situated in second layer has been shown in Figure 5 and Figure 6 respectively. 

 

VI. Appendix 
Solution for displacements, stresses and strains after the restoration of aseismic state following a sudden 

strike-slip movement across the fault: 

The displacements, stresses and strains after the restoration of new aseismic state followed by a sudden 

movement across the fault 𝐹 have been found in the form given by the equations (17), where the solutions for 

(𝑢1)1, (𝜏12)1,. . . , (𝜏 13
′′ )1 are given by (18), (19) and (20). The components (𝑢1)2, (𝜏12 )2,. . . , (𝜏13)2 satisfy the 

relations (2)-(11), together with (16) and (21). To obtain the solutions we take the Laplace transformation of 

these relations with respect to the time 𝑡 and we get 

 

 
 𝜏 12 2 = 𝜇1

𝜕 𝑢 1 2

𝜕𝑦2

 𝜏 13 2 = 𝜇1
𝜕 𝑢 1 2

𝜕𝑦3

  (25) 

for 0 ≤ y3 ≤ h1,−∞ < y2 < ∞ 

 

 
 𝜏 12

′  2 = 𝜇 2
𝜕 𝑢 1

′  
2

𝜕𝑦2

 𝜏 13
′  2 = 𝜇 2

𝜕 𝑢 1
′  

2

𝜕𝑦3

  (26) 

for h1 ≤ y3 ≤ h2,−∞ < y2 < ∞ 

 

 
 𝜏 12

′′  2 = 𝜇 3
𝜕 𝑢 1

′′  
2

𝜕𝑦2

 𝜏 13
′′  2 = 𝜇 3

𝜕 𝑢 1
′′  

2

𝜕𝑦3

  (27) 
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for y3 ≥ h2,−∞ < y2 < ∞ 

where 𝜇 2 =
𝑝

𝑝

𝜇 2
+

1

𝜂2

 and 𝜇 3 =
𝑝

𝑝

𝜇 3
+

1

𝜂3

 

𝜕 𝜏 12 2

𝜕𝑦2
+

𝜕 𝜏 13 2

𝜕𝑦3
= 0  (28) 

for 0 ≤ y3 ≤ h1,−∞ < y2 < ∞ 

 
𝜕 𝜏 12

′  
2

𝜕𝑦2
+

𝜕 𝜏 13
′  

2

𝜕𝑦3
= 0  (29) 

for h1 ≤ y3 ≤ h2,−∞ < y2 < ∞ 

 
𝜕 𝜏 12

′′  
2

𝜕𝑦2
+

𝜕 𝜏 13
′′  

2

𝜕𝑦3
= 0  (30) 

for y3 ≥ h2,−∞ < y2 < ∞ 

 

∇2 𝑢 1 2 = 0  (31) 

for 0 ≤ y3 ≤ h1,−∞ < y2 < ∞ 
 

∇2 𝑢 1
′  2 = 0  (32) 

for h1 ≤ y3 ≤ h2,−∞ < y2 < ∞ 

 

∇2 𝑢 1
′′  2 = 0  (33) 

for y3 ≥ h2,−∞ < y2 < ∞ 

 

 

 𝜏 13 2 = 0 at y3 = 0

 𝜏 13 2 =  τ 13
′  2 at y3 = h1

 u 1 2 =  u 1
′  2  at y3 = h1

 τ 13
′  2 =  τ 13

′′  2 at y3 = h2

 u 1
′  2 =  u 1

′′  2 at y3 = h2

 τ 13
′′  2 → 0 as y3 → ∞

for  y2 < ∞  
 
 
 

 
 
 

 (34) 

 

 

 𝑒 12 2 → 0

 𝑒 ′12 2 → 0
 𝑒 ′′ 12 2 → 0

as  y2 → ∞ 
 

 
 (35) 

and  

  𝑢 ′1 2 =
𝑈

𝑝
𝑓 𝑦3

′   across 𝐹: (y2
′ = 0, 0 ≤ y3

′ ≤ 𝑙) (36) 

where 

  𝑢 1 2,……… ,  𝜏 13
′′  2 =    𝑢1 2 ,……… ,  𝜏13

′′  2 

∞

0

 exp(−𝑝𝑡)𝑑𝑡 

and 𝑝 being the Laplace transform variable. 

 

The boundary value problem (25)-(36) can be solved by using modified form of Green’s function technique 

developed by Maruyama [1966] and Rybicki [1971] with correspondence principle and following them we get 

 𝑢 1 2 𝑄1 ,𝑃 =    𝑢 ′1 2 𝑃   𝐺12 1 
1  𝑄1 ,𝑃 𝑑𝑥3 − 𝐺13 1 

1  𝑄1 ,𝑃 𝑑𝑥2 

𝐹

  (37) 

 𝑢 1
′  2 𝑄2 ,𝑃 =    𝑢 ′1 2 𝑃   𝐺12 2 

1  𝑄2 ,𝑃 𝑑𝑥3 − 𝐺13 2 
1  𝑄2 ,𝑃 𝑑𝑥2 

𝐹

  (38) 

 𝑢 1
′′ 2 𝑄3 ,𝑃 =    𝑢 ′1 2 𝑃   𝐺12 3 

1  𝑄3 ,𝑃 𝑑𝑥3 − 𝐺13 3 
1  𝑄3 ,𝑃 𝑑𝑥2 

𝐹

  (39) 

where 𝑄1(𝑦1 , 𝑦2 , 𝑦3), 𝑄2(𝑦1 , 𝑦2 , 𝑦3), 𝑄3(𝑦1 , 𝑦2 , 𝑦3) are the field points in the first layer, second layer and half-

space respectively and 𝑃(𝑥1 , 𝑥2, 𝑥3) is any point on the fault 𝐹 and [(𝑢′1)2(𝑃)] is the magnitude of discontinuity 

of  𝑢′1 across the fault 𝐹 and  
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[ 𝑢 ′1 2(𝑃)]  =
𝑈

𝑝
𝑓(𝑥3) (40) 

Suppose 𝑃(𝜉1
′ , 𝜉2

′ , 𝜉3
′ ) is any point on 𝐹 with respect to origin 𝑂′(0, 0, 1 + 𝑟1) and then a change of co-ordinate 

from (𝑥1 , 𝑥2 , 𝑥3) to  𝜉1
′ , 𝜉2

′ , 𝜉3
′   is connected by the relations 

𝑥1 = 𝜉1
′ , 𝑥2 = 𝜉2

′  , 𝑥3 = 𝜉3
′ + 𝑟1 + 1 (41) 

 

Then on the fault 𝐹: 𝜉2
′ = 0, so, 𝑑𝜉2

′ =  0 and 𝑑𝑥3  =  𝑑𝜉3
′  , 0 ≤ 𝜉3

′ ≤  𝑙. 
 

Therefore, 

 

 𝑢 1 2 𝑄1 ,𝑃 =
𝑈

𝑝
 𝑓(𝜉3

′ )𝐺12 1 
1  𝑄1 ,𝑃 𝑑𝜉3

′

𝑙

0

  (42) 

 𝑢 1
′  2 𝑄2 ,𝑃 =

𝑈

𝑝
 𝑓(𝜉3

′ )𝐺12 2 
1  𝑄2 ,𝑃 𝑑𝜉3

′

𝑙

0

  (43) 

 𝑢 1
′′ 2 𝑄3 ,𝑃 =

𝑈

𝑝
 𝑓(𝜉3

′ )𝐺12 3 
1  𝑄3,𝑃 𝑑𝑥3

′

𝑙

0

  (44) 

Where 

𝐺12 1 
1  𝑄1 ,𝑃 =   𝐴1 𝜆 𝑒

−𝜆𝑦3 + 𝐵1 𝜆 𝑒
𝜆𝑦3 sin 𝜆 𝑥2 − 𝑦2  

∞

0

(45) 

  

 
𝐺12 2 

1  𝑄2 ,𝑃 =   𝐴2 𝜆 𝑒
−𝜆𝑦3 + 𝐵2 𝜆 𝑒

𝜆𝑦3 sin 𝜆 𝑥2 − 𝑦2  𝑑𝜆

∞

0

−
1

2𝜋

𝑥2 − 𝑦2

 𝑥2 − 𝑦2 
2 +  𝑥3 − 𝑦3 

2  
 
 

 
 

(46) 

𝐺12 3 
1  𝑄3 ,𝑃 =   𝐴3 𝜆 𝑒

−𝜆𝑦3 + 𝐵3 𝜆 𝑒
𝜆𝑦3 sin 𝜆 𝑥2 − 𝑦2  𝑑𝜆

∞

0

(47) 

 

𝐴1 𝜆 =
𝛾 1
𝜋Δ2

  𝛾 2 − 1 𝑒𝜆 21+𝑥3 −  𝛾 2 + 1 𝑒𝜆 21+22−𝑥3  

𝐴2 𝜆 = −
1

2𝜋Δ2

 
 𝛾 1 + 1  𝛾 2 + 1 𝑒𝜆 21+22−𝑥3 −  𝛾 1 − 1  𝛾 2 − 1 𝑒𝜆 41+𝑥3 +

 𝛾 1 − 1  𝛾 2 + 1 𝑒𝜆 41+22−𝑥3 −  𝛾 1 + 1  𝛾 2 − 1 𝑒𝜆 21+𝑥3 
 

𝐵2 𝜆 =
𝛾 2 − 1

2𝜋Δ2

 
 𝛾 1 − 1  𝑒𝜆 21−𝑥3 + 𝑒𝜆𝑥3  +

 𝛾 1 + 1  𝑒𝜆 21+𝑥3 + 𝑒𝜆 21−𝑥3  
 

𝐴3 𝜆 = −
1

𝜋Δ2

 
 𝛾 1 − 1  𝑒𝜆 41+22−𝑥3 + 𝑒𝜆 22+𝑥3  +

 𝛾 1 + 1  𝑒𝜆 21+22+𝑥3 + 𝑒𝜆 21+22−𝑥3  
 

𝐵3 𝜆 = 0  
 
 
 
 
 

 
 
 
 
 

 

 Δ2 =  𝛾 2 − 1 𝑒2𝜆1  𝛾 1 + 1 +  𝛾 1 − 1 𝑒2𝜆1 +

 𝛾 2 + 1 𝑒2𝜆2  𝛾 1 − 1 +  𝛾 1 + 1 𝑒2𝜆1 
  (48) 

where 𝛾 1 =
𝜇 2

𝜇1
, 𝛾 2 =

𝜇 3

𝜇 2
 

 

𝐴2 𝜆 𝑒
−𝜆𝑦3 + 𝐵2 𝜆 𝑒

𝜆𝑦3

= −
1

2𝜋Δ2

 
 
 
 
 
 𝛾 1 + 1  𝛾 2 + 1 𝑒𝜆 21+22−𝑥3 −

 𝛾 1 − 1  𝛾 2 − 1 𝑒𝜆 41+𝑥3 +

 𝛾 1 − 1  𝛾 2 + 1 𝑒𝜆 41+22−𝑥3 −

 𝛾 1 + 1  𝛾 2 − 1 𝑒𝜆 21+𝑥3  
 
 
 
 
𝑒−𝜆𝑦3 +

𝛾 2 − 1

2𝜋Δ2

 
 𝛾 1 − 1  𝑒𝜆 41−𝑥3 + 𝑒𝜆𝑥3 +

 𝛾 1 + 1  𝑒𝜆 21+𝑥3 + 𝑒𝜆 21−𝑥3  
 𝑒𝜆𝑦3

 
 
 
 
 

 
 
 
 

(49) 

Now first part of (49) 
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−
1

2𝜋

 
 
 
 
 
 
 
 
 
 𝛾 1 + 1  𝛾 2 + 1 

Δ2

𝑒𝜆 21+22−𝑥3−𝑦3 −

 𝛾 1 − 1  𝛾 2 − 1 

Δ2

𝑒𝜆 41+𝑥3−𝑦3 +

 𝛾 1 − 1  𝛾 2 + 1 

Δ2

𝑒𝜆 41+22−𝑥3−𝑦3 −

 𝛾 1 + 1  𝛾 2 − 1 

Δ2

𝑒𝜆 21+𝑥3−𝑦3 

 
 
 
 
 
 
 
 
 

 

and second part of (49) 

1

2𝜋

 
 
 

 
  𝛾 1 − 1  𝛾 2 − 1 

Δ2

 𝑒𝜆 41−𝑥3+𝑦3 + 𝑒𝜆 𝑥3+𝑦3  +

 𝛾 1 + 1  𝛾 2 − 1 

Δ2

 𝑒𝜆 21+𝑥3+𝑦3 + 𝑒𝜆 21−𝑥3+𝑦3  
 
 
 

 
 

 

where 𝑎1 =
 𝛾 2−1 

 𝛾 2+1 
 , 𝑐1 =

 𝛾 1−1 

 𝛾 1+1 
  and 𝛾 1 =

𝜇 2

𝜇1
, 𝛾 2 =

𝜇 3

𝜇 2
. 

Now   

 𝛾 1 + 1  𝛾 2 + 1 

Δ2

=
𝑒−2𝜆(1+2)

𝑀
 

 𝛾 1 − 1  𝛾 2 − 1 

Δ2

=
𝑎1𝑐1𝑒

−2𝜆(1+2)

𝑀
 

 𝛾 1 + 1  𝛾 2 − 1 

Δ2

=
𝑎1𝑒

−2𝜆(1+2)

𝑀
 

 𝛾 1 − 1  𝛾 2 + 1 

Δ2

=
𝑐1𝑒

−2𝜆(1+2)

𝑀
 

where 𝑀 = 1 + 𝑎1𝑒
−2𝜆2 + 𝑎1𝑐1𝑒

−2𝜆 2−1 + 𝑐1𝑒
−2𝜆1  and |𝑀| < 1(Mondal and Sen [12]). 

Now putting the above values in (49) and using (47) then integrating we get 

𝐺12(2)
1 =  

1

2𝜋
 −

𝑑1

𝑑2 + 𝑑1
2
 +

𝑎1𝑐1𝑑1

 𝑑2 − 21 + 22 
2 + 𝑑1

2 −
𝑐1𝑑1

 𝑑 − 21 
2 + 𝑑1

2 +

𝑎1𝑑1

 𝑑2 + 22 
2 + 𝑑1

2 +
𝑎1𝑐1𝑑1

 22 − 21 − 𝑑2 
2 + 𝑑1

2 +
𝑎1𝑐1𝑑1

 22 + 21 − 𝑑 2 + 𝑑1
2 +

𝑎1𝑑1

 22 − 𝑑 2 + 𝑑1
2 +

𝑎1𝑑1

 22 − 𝑑2 
2 + 𝑑1

2 +
𝑎1𝑑1

 𝑑1 + 22 
2 + 𝑑1

2 −

𝑎1
2𝑐1𝑑1

 𝑑2 + 42 − 21 
2 + 𝑑1

2 +
𝑎1𝑐1𝑑1

 𝑑 + 22 − 21 
2 + 𝑑1

2 −
𝑎1

2𝑑1

 𝑑2 + 42 
2 + 𝑑1

2 −

𝑎1
2𝑐1𝑑1

 42 − 21 − 𝑑2 
2 + 𝑑1

2 −
𝑎1

2𝑐1𝑑1

 42 + 21 − 𝑑 2 + 𝑑1
2 −

𝑎1
2𝑑1

 42 − 𝑑 2 + 𝑑1
2 −

𝑎1
2𝑑1

 42 − 𝑑2 
2 + 𝑑1

2 +
𝑎1𝑐1𝑑1

 𝑑 + 22 − 21 
2 + 𝑑1

2 −
𝑎1

2𝑐1
2𝑑1

 𝑑2 + 42 − 41 
2 + 𝑑1

2 +

𝑎1𝑐1
2𝑑1

 22 − 41 + 𝑑 2 + 𝑑1
2 −

𝑎1
2𝑐1𝑑1

 42 − 21 + 𝑑2 
2 + 𝑑1

2 −
𝑎1

2𝑐1
2𝑑1

 42 − 41 − 𝑑2 
2 + 𝑑1

2 −

𝑎1
2𝑐1

2𝑑1

 42 − 𝑑 2 + 𝑑1
2 −

𝑎1
2𝑐1𝑑1

 42 − 21 − 𝑑 2 + 𝑑1
2 −

𝑎1
2𝑐1𝑑1

 42 − 21 − 𝑑2 
2 + 𝑑1

2 +

𝑐1𝑑1

 21 + 𝑑 2 + 𝑑1
2 −

𝑎1𝑐1
2𝑑1

 𝑑2 + 22 
2 + 𝑑1

2 +
𝑐1

2𝑑1

𝑑2 + 𝑑1
2 −

𝑎1𝑐1𝑑1

 𝑑2 + 22 + 21 
2 + 𝑑1

2 −
𝑎1𝑐1

2𝑑1

 22 − 𝑑2 
2 + 𝑑1

2 −
𝑎1𝑐1

2𝑑1

 22 + 41 − 𝑑 2 + 𝑑1
2 −

 𝑎1𝑐1𝑑1

 22 + 21 − 𝑑2 
2 + 𝑑1

2 −
𝑑1

𝑑2
2 + 𝑑1

2  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(50) 

where 𝑑 = 𝑥3 + 𝑦3, 𝑑1 = 𝑥2 − 𝑦2 , 𝑑2 = 𝑦3 − 𝑥3 

In changed co-ordinate system  
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𝑑 = 𝑥3 + 𝑦3 = 𝜉3

′ + 𝑟1 + 1 + 𝑦3

𝑑1 = 𝑥2 − 𝑦2 = 𝜉2
′ − 𝑦2 = −𝑦2

𝑑2 = 𝑦3 − 𝑥3 = 𝑦3 − 𝜉3
′ − 𝑟1 − 1

 (51) 

Using (43), (50), (51) we get 

 𝑢 ′1 2 𝑄2 =
𝑈

2𝜋
𝜙 1
′  𝑦2 , 𝑦3 , 𝑝  (52) 

Similarly we can calculate the terms 𝐺12(1)
1 , 𝐺12(3)

1  and putting these values in (42) and (44) respectively we get 

 𝑢 1 2 𝑄1 =
𝑈

𝜋
𝜓 1
′  𝑦2 , 𝑦3 , 𝑝  (53) 

  𝑢 ′′1 2 𝑄3 = −
𝑈

𝜋𝜇3
𝜒 1
′ (𝑦2 , 𝑦3 , 𝑝) (54) 

where 

𝜙 1
′ (𝑦2 , 𝑦3 , 𝑝) =  𝑓 𝜉3

′  

 
 
 
 
 
 
 
 
 
 
 
 

1

𝑝

𝑦2

𝐵01

−
𝑎1𝑐1𝑦2

𝑝
 

1

𝐵02

+
1

𝐵05

+
2

𝐵11

−
1

𝐵24

−
1

𝐵28

 +

𝑐1𝑦2

𝑝
 

1

𝐵03

−
1

𝐵21

 −
𝑎1𝑦2

𝑝
 

1

𝐵04

+
1

𝐵07

+
1

𝐵08

+
1

𝐵09

 +

𝑎1
2𝑐1𝑦2

𝑝
 

2

𝐵10

+
2

𝐵13

+
1

𝐵14

+
1

𝐵20

 +
𝑎1

2𝑦2

𝑝
 

1

𝐵12

+
1

𝐵15

+
1

𝐵16

 +

𝑎1
2𝑐1

2𝑦2

𝑝
 

2

𝐵17

+
2

𝐵19

+
1

𝐵15

 −
𝑎1𝑐1

2𝑦2

𝑝
 

1

𝐵18

−
1

𝐵04

−
1

𝐵08

−
1

𝐵26

 −

𝑐1
2𝑦2

𝑝

1

𝐵01

+
1

𝑝

𝑦2

𝐵29  
 
 
 
 
 
 
 
 
 
 
 

𝑑𝜉3 
′ (55)

𝑙

0

 

and 

𝜓 1
′ (𝑦2 , 𝑦3 , 𝑝) =  

𝑓 𝜉3
′  

𝑝

𝜇 2
𝜇 2 + 𝜇1

𝑙

0

 
 
 
 
 
 
 𝑦2  

1

𝐵01

+
1

𝐵29

 − 𝑎1𝑦2  
1

𝐵04

+
1

𝐵07

+
1

𝐵08

+
1

𝐵09

 +

𝑎1
2𝑦2  

1

𝐵12

+
1

𝐵15

 − 𝑐1𝑦2  
1

𝐵21

+
1

𝐵32

 +

𝑎1𝑐1𝑦2  
1

𝐵24

+
1

𝐵06

−
1

𝐵11

−
1

𝐵05

 + 𝑎1
2𝑐1𝑦2  

1

𝐵10

+
1

𝐵20

 
 
 
 
 
 
 
 

𝑑𝜉3 
′ (56) 

 

𝜒 1
′ (𝑦2 , 𝑦3 , 𝑝) =  

𝑓 𝜉3
′  

𝑝

𝜇 2
𝜇 2 + 𝜇 3

 
 
 
 
 
 
 −𝑦2  

1

𝐵01

+
1

𝐵29

 + 𝑎1𝑦2  
1

𝐵04

+
1

𝐵09

 +

𝑐1𝑦2  
1

𝐵31

−
1

𝐵3

 + 𝑐1
2𝑦2  

1

𝐵01

+
1

𝐵35

 +

𝑎1𝑐1𝑦2  
2

𝐵11

+
1

𝐵30

+
1

𝐵34

 + 𝑎1𝑐1
2𝑦2  

1

𝐵04

+
1

𝐵33

 
 
 
 
 
 
 
 

𝑙

0

𝑑𝜉3 
′ (57) 

Taking Laplace inversions of (53), (52), (54), we get 

 𝑢1 2 𝑄1 =
𝑈

𝜋
𝜓1
′  𝑦2 , 𝑦3 , 𝑡  (58) 

 𝑢′1 2 𝑄2 =
𝑈

2𝜋
𝜙1
′  𝑦2 , 𝑦3 , 𝑡  (59) 

  𝑢′′1 2 𝑄3 = −
𝑈

𝜋𝜇3
𝜒1
′ (𝑦2 , 𝑦3 , 𝑡) (60) 

where 𝜓1
′  𝑦2 , 𝑦3 , 𝑡 , 𝜙1

′  𝑦2 , 𝑦3 , 𝑡 , 𝜒1
′ (𝑦2 , 𝑦3 , 𝑡) are the inverse Laplace transforms of 𝜓 1

′  𝑦2 , 𝑦3 , 𝑝 , 
𝜙 1
′  𝑦2 , 𝑦3 , 𝑝 , 𝜒 1

′ (𝑦2 , 𝑦3 , 𝑝) respectively. Now putting the values of  𝑢 1 2,  𝑢 1
′  2,  𝑢 ′1

′  2 from (53), (52), (54) 

into (25), (26), (27) we get 

 𝜏 12 2 =
𝜇1𝑈

𝜋
𝜓 2
′  𝑦2 , 𝑦3 , 𝑝  (61) 

 𝜏 13 2 =
𝜇1𝑈

𝜋
𝜓 3
′  𝑦2 , 𝑦3 , 𝑝  (62) 

 𝜏 12
′  2 =

𝑈

2𝜋
𝜙 2
′  𝑦2 , 𝑦3 ,𝑝  (63) 

 𝜏 13
′  2 =

𝑈

2𝜋
𝜙 3
′  𝑦2 , 𝑦3 ,𝑝   64  

 𝜏 12
′′  2 = −

𝑈

𝜋
𝜒 2
′  𝑦2 , 𝑦3 , 𝑝  (65) 

 𝜏 13
′′  2 = −

𝑈

𝜋
𝜒 3
′  𝑦2 , 𝑦3 , 𝑝  (66) 
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Taking Laplace inversions 

 𝜏12 2 =
𝜇1𝑈

𝜋
𝜓2
′  𝑦2 , 𝑦3 , 𝑡  (67) 

 𝜏13 2 =
𝜇1𝑈

𝜋
𝜓3
′  𝑦2 , 𝑦3 , 𝑡  (68) 

 𝜏12
′  2 =

𝑈

2𝜋
𝜙2
′  𝑦2 ,𝑦3 , 𝑡  (69) 

 𝜏13
′  2 =

𝑈

2𝜋
𝜙3
′  𝑦2 ,𝑦3 , 𝑡   70  

 𝜏12
′′  2 = −

𝑈

2𝜋
𝜒2
′  𝑦2 ,𝑦3 , 𝑡  (71) 

 𝜏13
′′  2 = −

𝑈

2𝜋
𝜒3
′  𝑦2 ,𝑦3 , 𝑡  (72) 

where the expressions for 𝜓2
′ (𝑦2 , 𝑦3 , 𝑡), 𝜓3

′ (𝑦2 , 𝑦3 , 𝑡); 𝜙2
′ (𝑦2 , 𝑦3 , 𝑡), 𝜙3

′ (𝑦2 , 𝑦3 , 𝑡); 𝜒2
′ (𝑦2 , 𝑦3 , 𝑡), 𝜒3

′  𝑦2 , 𝑦3 , 𝑡  can 

be obtained from 𝜓 2
′ (𝑦2 , 𝑦3 , 𝑝), 𝜓 3

′  𝑦2 , 𝑦3 , 𝑝 ; 𝜙 2
′ (𝑦2 , 𝑦3 , 𝑝), 𝜙 3

′  𝑦2 , 𝑦3 , 𝑝 ; 𝜒 2
′ (𝑦2 , 𝑦3 , 𝑝), 𝜒 3

′ (𝑦2 , 𝑦3 , 𝑝) 

respectively by taking inverse Laplace transformation. 

 

Where 

 

 

𝐵01 =  𝜉3
′ + 𝑟1 + 1 + 𝑦3 

2 + 𝑦2
2

𝐵02 =  22 − 31 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵03 =  𝜉3
′ + 𝑟1 − 1 + 𝑦3 

2 + 𝑦2
2

𝐵04 =  22 − 1 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵05 =  22 − 1 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵06 =  22 + 1 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵07 =  22 − 1 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵08 =  22 + 1 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2 = 𝐵25

𝐵09 =  22 + 1 + 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵10 =  42 − 31 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵11 =  22 − 1 + 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵12 =  42 − 1 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵13 =  42 − 1 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵14 =  42 + 1 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵15 =  42 − 1 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵16 =  42 + 1 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵17 =  42 − 51 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵18 =  22 − 31 + 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵19 =  42 − 31 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵20 =  42 − 31 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵21 = 𝐵31 =  31 + 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵24 = 𝐵30 =  22 + 1 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵26 =  22 + 31 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵28 =  22 + 31 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵29 =  1 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵32 =  31 − 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵33 =  22 − 31 + 𝑦3 + 𝜉3
′ + 𝑟1 

2 + 𝑦2
2

𝐵34 =  22 − 31 + 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2

𝐵35 =  31 − 𝑦3 − 𝜉3
′ − 𝑟1 

2 + 𝑦2
2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(73) 
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Figure 1: Section of the model by the plane 𝑦1  =  0. 

 

 
           Figure 2: Residual surface shear strain due to fault movement. 
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(c) 

Figure 3: Surface shear stress in the first layer due to the fault movement. (a) 

𝑦2 = 5 km., (b) 𝑦2 = 10 km., (c) 𝑦2 = 15 km. 

 

 
 (a)             (b) 

 
(c) 

Figure 4: Surface shear stress due to the fault movement in the second layer. 

(a) 𝑦2= 2 km., (b) 𝑦2= 5 km., (c) 𝑦2 = 10 km. 
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Figure 5: Contour map in the first layer 

 

 
Figure 6: Contour map in the second layer 
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